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The Outline

• summary of theory FLR effects on tearing modes (V. Svidzinski, PoP 2004)

• NIMROD preliminaries

• hybrid kinetic-MHD

• initial simulation results

• stepping backwards to a slab

• stepping forward - plans
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Summary of Theoretic Prediction of V. Svidzinskia

• predicts that in the limit of v‖ = 0, large FLR orbits stabilize tearing modes

• treats the energetic particles as a perturbation that modifies tearing layer

problem in RFP

– backs out a conductivity tensor from linearized Vlasov equation

– uses conductivity tensor to obtain Jhot

– uses Ampere’s law to obtain energetic particle corrections to magnetic

field and growth rate in linearized MHD equations

• examines impact of localized energetic distribution

• conjectures that finite v‖ dilutes stabilization

aV. A. Svidzinski and S. C. Prager, “Effects of particles with large gyroradii on resistive

magnetohydrodynamic stability”, PoP 11 980, 2004
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NIMROD Preliminaries

• NIMROD is an initial value 3D XMHD code

• uses finite elements in two dimension, Fourier in the third

– allows geometric flexibility

– can handle extreme anisotropies,
χ‖

χ⊥
≫ 106

• semi-implicit advance, not restricted by magnetosonic CFL condition

– model experiment relevant parameters, S ∼ 107−8

• allows both linear and nonlinear simulations
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NIMROD

• NIMROD’s extended MHD equations

∂B

∂t
= −∇× E + κdivb∇∇ · B

∇× B = µ0J

E = −U × B + ηJ+
1

ne
J × B

+
me

ne2

[

∑

α

qα

mα

(∇pα + ∇ · Πα)

]
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me

ne2
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∂J

∂t
+ ∇ · (JU + UJ)

]

∂n

∂t
+ ∇ · (nU) = ∇ · D∇n

mn

(

∂U

∂t
+ U · ∇U

)

= J × B −∇p + ∇ · ρν∇V −∇ · Π−∇ · ph

nα

Γ − 1

(

∂Tα

∂t
+ Uα · ∇Tα

)

= −pα∇ · Uα−∇ · qα + Qα−Πα : ∇Uα
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Representation of NIMROD fields

• NIMROD fields use quadrilateral finite element-Fourier representation

δA(x, t) =
∑

j

Aj,0(t)αj,0 +
∑

j

∑

n

(Aj,n(t)αj,n + c.c.)

where

αj,n = Nj(p, q) exp(inφ)

(p, q) are logical coordinates, Nj(p, q) = lj(p)lj(q) and

li(x) =
k

∏

i=0,i 6=j

x − xi

xj − xi

k = pd + 1, pd is the polynomial order of the Lagrange polynomial6
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Summary of the δf PIC Methodabc

• PIC is a Lagrangian simulation of phase space f(x,v) → f(x(t),v(t))

– discretize f(x,v) - sample with particles

– equations of motion are used to advance particles

– PIC uses spatial grid for field information

• in principle, f(x,v) contains everything

• BUT limited statistics - PIC is noisy, can’t beat 1/
√

N

• δf PIC reduces the discrete particle noise associated with conventional PIC

aS. E. Parker and W. W. Lee, ‘A fully nonlinear characteristic method for gyro-kinetic

simulation’, Physics of Fluids B, 5, 1993
bG. Hu and J. A. Krommes, ”Generalized weighting scheme for δf particle simulation

method”, Physics of Plasmas, 1, 1994
cA. Y. Aydemir, “A unified MC interpretation of particle simulations...”, Physics of Plasmas,

1, 1994
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The δf PIC Method cont.

• begin with the Vlasov Equation

∂f(z)

∂t
+ ż · ∂f(z)

∂z
= 0

• split distribution function into steady state and evolving perturbation:

– f = feq(z) + δf(z, t)

– moments of feq easy to compute

• δf evolves along the characteristics ż i.e. the equations of motion

δ̇f = − ˙̃z · ∂feq

∂z

where ż = żeq + ˙̃z

• must choose a stationary feq (żeq ·
∂feq

∂z
= 0), often chosen as a function of

canonical variables
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δf and the Lorentz Equations

• Lorentz equation of motion

ẋ = v

v̇ =
q

m
(E + v × B)

• for full kinetic equations usea

f0 = f(x, v2) +
1

ωc

(v · b×∇f)

• weight equation is

δ̇f = −δE + v × δB

B
· b×∇f − 2q

m
δE · v ∂f

∂v2

• reproduces drift kinetic results for energetic particle effect on (1, 1) internal

kink mode

• compute perturbed energetic pressure pressure moment of δf particles
aM. N. Rosenbluth and N. Rostoker “Theoretical Structure of Plasma Equations”, Physics

of Fluids 2 23 (1959)
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Simulation Details

• Boris push with orbit averaging to accomodates disparate time scales

• energetic ion density profile ∝ exp
[

−
(

r
0.45a

)2
]

• use hybrid kinetic-MHD equationsa

ρ

(

∂U

∂t
+ U · ∇U

)

= J× B −∇ · p
b
−∇ · p

h

• project velocities into (⊥, ‖) (wrt B)components

• use CGL pressure tensor δp
h

=









p⊥ 0 0

0 p⊥ 0

0 0 p‖









• ultimately want full pressure tensor (work in progress)

aC.Z.Cheng,“A Kinetic MHD Model for Low Frequency Phenomena”,J. Geophys. Rev, 96,

1991
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Linear Simulations of Tearing Modes in a RFP

• alpha model equilibrium ∇× B = µB µ = 2Θ
[

1 −
( r

a

)α0
]

• parameters for straight cylinder

a = .5m, B0 = .3T , Θ = 1.75, α0 = 3,

S = 1.e4, ka = 2, γτA = 1.3e − 3
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FLR Stabilization of RFP Tearing Mode

• initialize with monoenergetic particles, only v × δB in weight equation

• use only perpendicular pressure for comparison with theory

• stabilization at ρh ≃ 4cm

• simulation sees real frequency - probably due to finite spread in velocity
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FLR Broadens Eigenmode Structure
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A Step Back - Path to further development

• need improved particles for full pressure tensor

• to ease development move to rectangular mesh - slab geometry

• probably an easier problem - both physics and computation

• interesting problem in itself
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Tearing mode in a slab

• strong guide field

• Gaussian current profile Jφ ∝ exp

(

− (x − x0)
2

a2

)

• two scale lengths of interest, a/ρ and kyρ

• effects of localization of energetic particles

• effect of finite v‖

• distill out geometry
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Stepping forward - Development plans

• move PIC-in-FEM to a CIC in nonuniform grida

• use polynomial shape function S ∝
[

1 −
( r

R

)2
]α

where r is distance of

particle from grid node, R is radius of influence, α is parameter to be

explored

• compare polynomial shape function to present implementation

• apply full pressure tensor

• move to cylindrical geometry

– term by term comparison with V. Svidzinski

• toroidal geometry

• apply to FRCs

• implement a full f PIC

aG. B. Jacobs and J. S. Hesthaven, ’High-order nodal discontinuous Galerkin PIC method

on unstructured grids’, JCP, 214, 2006
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